Consumer Energy Report is now Energy Trends Insider -- Read More »

By Russ Finley on Mar 15, 2016 with 6 responses

Update on the Progress of the Electrification of Transportation


Graph from Study in Nature Energy Modified by Me to Add Timeline

I found this study on Nature Energy, which I subscribe to: Moving beyond alternative fuel hype to decarbonize transportation.

Although I disagree with the study’s main conclusion, the above chart they put together (which I have modified) was of interest to me because it suggests that things are finally starting to happen when it comes to electrification of transportation.

The study authors combed through the New York Times archives for stories on energy topics. They summed up negative and positive articles to calculate the number of net positive articles about a given technology which they define as hype.

Had they mined the entire Internet instead of just the Times, I suspect the hype about biofuels would have been off the chart, literally. Stories about students piling into biodiesel-powered buses to spread the gospel had become a worn out cliché.

They lumped corn ethanol, cellulosic ethanol, and biodiesel into one category. It would be interesting to see which was generating the most hype.

The conclusion drawn by the researchers is that excessive positive mentions in the lay press (their definition of hype) creates unrealistic expectations that, when not met, lead to disappointment and the tarnishing of the reputation of a given technology (think hydrogen and cellulosic ethanol) which in turn, kills future government funding for it. Never mind for the moment that the government is still funding both of them. The authors are still hopeful that hydrogen and biofuels will one day displace oil.

I would disagree. Some technologies will fail the economic and/or environmental viability test, hype or no hype.

Interestingly enough, I recall few positive articles about corn ethanol, yet it is still going strong and still being made the way moonshine has always been made for centuries. So maybe the key to success is to convince politicians to mandate the consumption of your product regardless of its economic viability.

I recall when natural gas made its run. You could spot the occasional pickup truck that had been converted by the tanks of natural gas in the back. It still makes good economic sense for large centralized fleets like garbage trucks and taxi cabs and has carved out a small niche. Seattle’s garbage and recycling fleets run on it. The taxi fleet in Buenos Aires runs on it, etc, etc.

The EV1 was an example of government trying to force a technology into existence before its time. The documentary “Who Killed the Electric Car” insisted that the existing battery technology (Ni-MH) was perfectly adequate. Indeed, according to the film, oil companies had conspired to buy the patents for the large format version of these batteries (about the size of a brick) which prevented them from being available for electric cars.

Considering that you could buy power tools with Ni-MH batteries in them, and in 2000, a Prius, I found their theory to be somewhat implausible. It’s true that they were small battery cells, but no smaller than the lithium-ion battery cells used in the Tesla to this day. Tesla didn’t use Ni-MH batteries for the same reasons no other electric car manufacturer uses them. Electric car economic viability became a potential reality the day the lithium-ion battery was invented. The documentary was a day late and a dollar short considering that the lithium battery-powered Tesla Roadster arrived just a few years later.

If you think Musk, a billionaire, had his hands full building an electric car in 2008 using the best off-the-shelf lithium ion battery available at the time, topped off with a body built by Lotus, imagine the innocence of Amory Lovins in 1999 thinking he could design and build a mass marketable, super light-weight, carbon fiber, SUV that ran on fuel cells powered with hydrogen.

Note also in that chart that the Prius was solely responsible for kicking off hybrid technology (which still only accounts for about 3% of car sales).

2005 was an interesting year for two reasons. George Monbiot finally pointed out that the emperor had no clothes on (biofuels) and Joe Romm, who was so fed up with the hydrogen hype that he wrote a book about it. Romm gets it right once in a while. Hydrogen has to be created. It isn’t laying around like uranium or fossil fuels. You can make it via electrolysis, which is an expensive use of valuable electricity, or you can make it from natural gas, which is a huge source of CO2. Hydrogen is not an energy source. It is essentially a money and energy intensive storage medium, analogous to the potential energy stored in the water of a pumped hydro reservoir.

My Custom Designed Electric Bicycle using A123 Batteries

My Custom Designed Electric Bicycle using A123 Batteries

Tesla Bursts Into Flame After Hitting Road Debris

Tesla Bursts Into Flame After Hitting Road Debris

In 2007 the A123 lithium battery was used in the high-end Dewalt power tools. I bought a set and designed the Ultimate Seattle Hybrid Bicycle around them (which has undergone many design improvements since). They were much more thermally stable than the ones being used in laptops at the time and also in Tesla’s cars. I’m still using those batteries. I considered investing in A123 but thought better of it. They eventually went bankrupt.

2007 was also the year Jay Inslee published his book “Apollo’s Fire” where he predicted that cellulosic ethanol would be widely available by 2011.

Panasonic Battery Pack with Tesla Logo

Panasonic Battery Pack with Tesla Logo

In 2008 the Tesla Roadster was introduced using Panasonic batteries. That was also the year a series of papers in the journal Science kiboshed the idea that biofuels are carbon neutral. The carbon from a burned tree will stay in the atmosphere until that tree can be regrown, which depending on the tree could take decades to a century. GreenPeace and FOE are to this day fighting to end the burning of trees to make electricity in Europe. Once in a while, they also get things right.

In 2009 I wrote an article about Panasonic’s new lithium battery which they were marketing as a home storage device, exactly like Musk did six years later with the same (or similar) batteries in his Battery Walls.

The Chevy Volt and Nissan Leaf both arrived in the 2010-2011 time frame. I bought my Leaf in 2011. The $70K Tesla Model S arrived a few years later followed by the Model X, joining the $80K Roadster as testament to the maxim that if money is no object, you can do just about anything.

What does the future hold? The approximately 200 mile range, ~$35K Chevy Bolt arriving at the end of this year is bad news for the Leaf if Nissan can’t match the Bolt’s range and price. The approximately 200 mile range, ~$35K Tesla Model 3, is expected to arrive shortly after the Chevy Bolt. However, according to Musk, this price is dependent on the performance of his new battery Gigafactory, so, time will tell.


Chevy Bolt Battery Pack

Chevy Bolt Battery Pack

When it comes to electric cars, it’s all about the battery. The Bolt is using the LG Chem battery, which has stirred a lot of interest, including Tesla’s. Apparently, the LG Chem battery isn’t a breakthrough in low cost technology. It’s a special deal for Chevy. Other LG Chem customers are paying a lot more for theirs.

For those wanting a hatchback and the assurance of maintenance by any nearby Chevy dealer, the Bolt may be the car of choice. For those wanting that James Bond look who live near an urban center with a Tesla Dealership, the Model 3 may fit the bill.

  1. By Erocker on March 15, 2016 at 8:13 pm

    I guess if the government mandates 10% electric cars we well get 10% electric cars just like corn ethanol is mandated at 10%. Government can throw out free enterprise and it has with corn ethanol.

    • By Russ Finley on March 15, 2016 at 10:19 pm

      Subsidies are meant to be a temporary assist to test the economic viability of a given technology. Corn ethanol is in a category of its own. Instead of being subsidized, its consumption is mandated by law.

      • By Erocker on March 15, 2016 at 11:04 pm

        Corn Ethanol was directly subsidies until about 3 years ago. Currently it is being indirectly subsidized through farm programs like crop insurance which the federal government pays 66% of. When the government starts to mandate things it is a whole new type of government. Different than what we learn in school it was.

    • By Theo A on March 19, 2016 at 6:21 pm

      The 10% mandate is to keep our options open. It has taken 30+ years, an entire generations effort to get to 10%. It will probably take 30 years to get to 10% electric vehicles.

      It is not an accident that the US military has been quietly making sure larger and larger chunks of it equipment can function on bio-fuels.

      Other than in casual fact free conversation no one seriously thinks that our grand children will have the option of squandering fossil fuels the way we are…

      …keep our options open.

  2. By Forrest on March 16, 2016 at 7:55 am

    To make your case stronger, best to stay clear of making the comparison of battery car and ethanol fuel hype. Not much of a contest per the massive hype of battery car as compared to the competition. After all the entire fleet of large and small powered engines nowadays running on ethanol blends with results of lower fuel costs, better performance, and less emissions. The ethanol contribution to mitigating environmental harm a huge success. Non of the fear mongering points of concern of opponents realized. I remember petrol attempts to thwart ethanol by claiming corn was the worst feed stock and that we should focus on celllulosic only. Now, that cellulosic plant production is a reality, not so much. I have trouble with ethanol naysayers point of view and get confused if they hate ethanol as a fuel or is it the feed stocks of corn, starch, cellulose, waste, or sugar? My best guess, they just hate the competition to their personal cherished ideal solution or per the investment portfolio of petrol. Personally, I do think ethanol fuel is an excellent fuel per my engineering background for ICEs. Also, the technology of processing, farming, and biology advances continue to improve the choice. Now, I have no problem with gasoline, diesel, hydrogen, or battery car, either. I would just as well own one of these vehicles if the benefit of ownership were come to fruition. That and the benefit to country and environment were an improvement. I do read the investments and technology advances of hydrogen place the fuel well on path to disrupt all fuel choices. The battery car continues to make inroads upon metro mild climate short travel market, but at a very anemic pace. Presently, losing market share per competition of low cost fuel supply. Repeat customers drifting away to make better choices.

  3. By Forrest on March 20, 2016 at 7:42 am

    By the chart, battery car achieved max hype as compared to the competition, thus the most disappointment as a solution to environmental problems. Biofuels the lowest hype and attained the position of maximum solution. Biofuel us quite common blend stock within the fuel market, nowadays. Just about the entire fleet approved for E15 blend. Work is progressing upon a super premium E30 for high efficient future models. Blend pumps are becoming more popular to offer consumers a wide array of ethanol blends. It looks like the hype of hybrid is not misplaced as the Mild hybrid is positioning to become most popular within new car sales per ultra high mileage capability. So, biofuel blend fuel will meet mild hybrid to improve environmental footprint of transportation. Since heavy duty transportation sector is a bigger problem for emission per dirty diesel, look forward to ethanol engines making a huge improvement if the fuel becomes widely accepted. Much torque can be developed by a capable engine with ethanol fuel with very low tail pipe emissions. PMs drop drastically as well as CO2.

    Current state of affairs within cellulosic production chilled by EPA actions more so than the process technology. Long term investment and the RIN market were decimated by lack of law enforcement and uncertainty. Producers have no foundation to build production upon.

    Hydrogen and fuel cell is basically a gas battery. Batteries are useless until recharged either with with coal or what have you power to produce electricity and/or hydrogen. Hydrogen is superior per ability to easily store, pipe, and transport. Electricity is hard to manage, dangerous, expensive to distribute, and difficult to store. For example remote wind power turbines are uneconomical to connect to grid but could produce hydrogen that could be cheaply piped or stored. Same for remote solar. Batteries will never power the heavy duty torque market as compared to hydrogen already making inroads. Battery car is struggling to achieve 200 mile range whereas the fuel cell car can easily achieve 400 or what have you range with very little extra cost. Refueling of the hydrogen car delay as compared is minimal and comparable to current fuel fleet. Hydrogen has wide market to offer power and heat to stand alone customers at much higher efficiency than grid power. Hydrogen is acceptable fuel for rocket engines and turbine technology. The fuel is very light for the BTU content and storage device weight is steadily decreasing. Forklift warehouse market is already in the throws of converting to hydrogen and dumping the battery.

Register or log in now to save your comments and get priority moderation!