Consumer Energy Report is now Energy Trends Insider -- Read More »

By Robert Rapier on Dec 22, 2008 with 2 responses

Ambitious Solar Plans in France; Solar Capacity Factors

The following guest post was written by Tom Standing, a “semi-retired, part-time civil engineer for the City of San Francisco.” In Part 1, Tom took a critical look at a 280 MW solar thermal plant in Arizona. Here in Part 2, Tom examines France’s ambitious solar plans.

———————

The December 1 issue of the Oil and Gas Journal carried a “Quick Take” article about France’s “national plan for renewable energies” that they unveiled on November 17. Their plan includes all the popular ideas for alternative energy: biomass, wind, hydro, waves and tides, with a major emphasis on solar. For now France has 13 megawatts of installed capacity in solar, but the energy minister wants solar to be a whopping 5,400 MW in 2020! He says that France will change its carbon-based energy model to a completely decarbonized model: each home, company, and community will produce its own energy.

Excuse me, but why is France doing this? They already have the least carbon-intensive energy system of any industrialized nation. They generate 75% of their electricity with nuclear, supported by the most extensive technology to reprocess spent nuclear fuel, than any nation in the world. Practically 100% of their rail system is electrified, packed with people, whether on the Paris Metro or speedy intercity trains. France has already developed the working model of a low-carbon energy system for other nations to emulate.

Let’s do some rational calculations on France’s solar plan, similar to my last email. We can see what surface area of collectors would be needed, and how much electricity would be generated.

Collector Area

As I explained previously, solar panels are rated at their maximum output, when the sun is near its highest altitude for the year under cloudless skies. Under such ideal conditions, insolation is about 1,000 watts per square meter. The most cost-effective panels convert about 10% of insolation into useful electricity, a factor that has remained unchanged for 10 years. Some PVs might convert 15%, but they cost more and are not mass-produced. Thus a typical panel of one square meter is rated at 100 watts.

To estimate the area of PV panels that France wants to install, we simply divide 5,400 MW by 100 W/m2 and we get an incomprehensible 54 million m2! It means that one million homes and businesses would have to be covered with 54 m2 of panels. A typical home can accommodate only 25-30 m2, so more than a million buildings would have to install PV. I do not know the worldwide capacity for manufacturing PV panels, but I would guess that current capacity is a small fraction of 54 million m2/year. Oh sure, capacity will grow, but what about PV for Germany, Spain, UK, the Low Countries, and the US? California alone would suck up a major chunk of that capacity.

Solar Electricity Generated

Let’s say that France actually installs 54 million m2 of solar by 2020. (I think it’s fantasy in the extreme, but let’s carry the scenario through.) How much electricity will the fully built-out system generate?

First, we need to estimate the insolation upon the collectors. While I have copious insolation data from NREL for the US, I have no site-specific data for Europe. But I can make a reasonable estimate. Having traveled throughout France at various times for a total of about 3 months (typically in the summer), I can say that France has mild sun conditions. I would compare the French summer sun to that of Cleveland or Minneapolis. However, France is located at somewhat higher latitudes, which tends to reduce midday sun strength and spreads it out over more daylight hours. The northern suburbs of Paris, say around de Gaulle International, is latitude 49o, the northern-most boundary between the US and Canada. The south-most reaches of France, are between latitude 43 and 44, equivalent to Buffalo, NY or Portland, Maine.

I will pick a number on the generous side for annual average insolation in France, equivalent to that of Boston, New York, Chicago, and Minneapolis:

4.6 kWh/ (m2-day).

This level of insolation is for optimum panel orientation: facing due south with no shading, tilted at an angle equal to local latitude. Varying amounts of shading with less than ideal orientation will reduce the insolation on the collectors of most installations.

Now we are ready to calculate the annual energy generated from the fully-built French PV system. As I showed in Section 8 of my previous email, the annual energy generated by a solar installation is the product of four factors:

Insolation, average day during a year = 4.6 kWh/ (m2-day)

10% conversion of insolation into electricity, the industry standard for PV

Area of solar collectors = 54 million m2

365 days/year

Cancelling out units and carefully watching orders of magnitude, we come up with 9 billion kWh of useful electricity generated during the first year of complete build-out. But we need to give this number some perspective.

Energy Generation in Perspective

EIA statistics show that French consumption of electricity grew from 353 billion kWh in 1992 to 415 billion in 2002, or 62 billion kWh in 10 years for an average gain of 6.2 billion kWh/year.

It means then, that this huge solar development would, at best, produce the equivalent of only 1.5 years of gain in France’s electricity consumption. And it would take a 12-year crash program to install that much solar!

Another comparison is with the annual power output of one of France’s 1,000 MW nuclear power reactors. If the reactor operates for a year at 90% capacity (typical for the industry), the three factors to multiply are: 90%, one million kW, and 8,760 hours/year. Multiplying out these factors, we find that a single reactor would produce about 8 billion kWh/year, roughly the equivalent electricity as all the solar panels covering nearly 2 million homes and businesses.

Costs for PV

In the US, homes and businesses that install PV typically receive “rebates,” (another word for “subsidies”) from state or local governments, or the utility, to be paid for by all ratepayers. Rebates usually amount to about half of the total installed cost. The unit cost for solar installations has changed little since 2000, in the range of $600 – $700 per square meter, or in the terms of the industry, $6,000 – $7,000 per rated kW. Thus a homeowner usually qualifies for a rebate of 6 or 7 thousand $ after installing a 2 kW PV system.

I don’t know if French taxpayers and ratepayers will subsidize solar installations, but the unsubsidized cost remains the same and must be paid by somebody. Total installed cost of the solar plan for France, then, would run in the neighborhood of $35 billion. What is the cost of building a single reactor in a nuclear power plant? Considerably less I would say.

Solar Capacity Factors

We can calculate capacity factors for any solar project directly from insolation data. This provides a shortcut to calculating electrical output on an annual or monthly basis when we are given the nameplate capacity. The capacity factor depends only on insolation during the time period in question, and is independent of the conversion factor between insolation and electricity.

The capacity factor is defined as the ratio of actual energy generated, to the energy generated at maximum insolation, i.e. nameplate capacity. Therefore, our ratio is:

actual average isolation/maximum insolation

Maximum insolation, we have seen, is 1,000 W/m2.

Actual insolation is given in kWh/ (m2-day). We have to convert this quantity into units of W/m2. We cancel out hours and days by dividing actual insolation by 24 h/d. For example, if insolation is 5.0 kWh/ (m2-day), the average power output during one day is 5,000/24 = 208 watts. Average power output divided by maximum insolation (1,000 W/m2) gives a capacity factor of 20.8%.

If you have some time during this busy season to look at this, I would value your input. I would like to take the discussion about “green energy” beyond all the vague generalizations that we hear repeatedly from our leaders about stimulating a green or clean energy future. It’s as if “renewable energy” is a virgin topic, yet to be assessed and waiting to be tapped. But we already have a great amount of information with which to evaluate avant-garde energy proposals. We need to put hard numbers to these generalizations.

  1. By Clee on March 3, 2011 at 7:19 pm

    Tom Standing asked in Dec 2008:
    I do not know the worldwide capacity for manufacturing PV panels

    According to http://register.solarbuzz.com/Marketbuzz2009-intro.htm
    World solar photovoltaic (PV) market installations reached a record high of 5.95 gigawatts (GW)…
    World solar cell production reached a consolidated figure of 6.85 GW in 2008

    So one year’s worth of 2008 production could supply the 5400 MW needed for France’s 12 year plan.

    More recently, according to the French government
    http://www.developpement-durable.gouv.fr/IMG/pdf/CS196.pdf
    719 MW of photovoltaic was installed in France in 2010, for a cumulative total of 1025 MW.

    If they continue to double their PV capacity every year, they will reach their 2020 goal of 5400 MW in 2013. If instead they continue to add only 719 MW per year they will reach their goal early in 2017. The reality will probably be somewhere in between.

    Considering that France is cutting PV subsidies, I don’t know if France will actually reach 5400 MW of PV in 2020, but it’s not at all “fantasy in the extreme“.

    [link]      
  2. By Clee on February 3, 2012 at 5:03 am

    Looks like my URL links from last year no longer work. However you can still find the 2008 PV production numbers reported by Solarbuzz at
    http://www.solarfeeds.com/solarbuzz-reports-world-solar-photovoltaic-market-grew-to-595-gigawatts-in-2008/

    Another year, and another doubling of grid-connected photovoltaics in France. In 2011 1500 MW of PV was connected to the grid in France to reach a cumulative capacity of 2500 MW according to
    http://www.epia.org/fileadmin/EPIA_docs/publications/epia/EPIA-market-report-2011.pdf

    If they continue to double their PV capacity every year, they will reach their 2020 goal of 5400 MW in early 2013. If instead they continue to add only 1500 MW per year they will reach their goal in 2014, six years ahead of schedule. Rather than “fantasy in the extreme“, it’s looking like their goals weren’t all that ambitious after all.

    [link]      
Register or log in now to save your comments and get priority moderation!